
Poster: Contract Verification for Mobile Security

Hannah Gommerstadt
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Email: hgommers@cs.cmu.edu
Graduate Student

Frank Pfenning
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA
Email:fp@cs.cmu.edu

Faculty

Limin Jia
Electrical & Computer Engineering Department

Carnegie Mellon University
Pittsburgh, PA

Email: liminjia@cmu.edu
Faculty

I. PROBLEM AND MOTIVATION

Every second of every day large amounts of confidential
data are secured to enable financial transactions, intelligence
operations, and countless other tasks. Today, many systems
are protected by distributed security mechanisms, such as
cryptographic protocols, or reference monitors. These systems
consist of components that are connected, but may be located
in diverse physically-distant environments. One of the charac-
teristics of a distributed system is its lack of a single point
of failure – each connected node poses a unique opportunity
for exploitation. The components collaborate to complete joint
tasks, such as implementing a cryptographic protocol. Each
one of these components has a prescribed role, their contract,
that governs their behavior during the process of the joint com-
putation. Guaranteeing the security of these systems is a chal-
lenge because it is necessary to ensure that every component is
not deviating from its expected behavior. A violation of even
a single contract can derail the joint computation and cause
a serious security breach in the distributed security protocol.
In an adversarial distributed computing environment, program
components do not trust each other and cannot be trusted to
adhere to their contracts. In order to ensure the security and
reliability of the system, it is necessary to identify the contract
violation and pinpoint the rogue component. This work strives
to provide logic and language-based methods to detect contract
deviance in distributed systems. More specifically, we define a
model for session-typed communicating processes, show how
to dynamically monitor communication to enforce adherance
to session types and present a system of blame assignment in
case an alarm is raised.

II. BACKGROUND & PREVIOUS WORK

In functional languages, a contract for a function can be
modeled as an expressive type that places constraints on its
arguments and return value. For example, a possible contract
for the division function could be:

div : x : int→ {y : int|y 6= 0} → float

In order to model concurrent computation in distributed
systems, we use a session type system which was designed by
Toninho et al. Session types are based on a computational
interpretation of linear logic which is a substructural logic
that allows reasoning about resources within the logic itself.
Toninho et al. used session types as the basis for SILL
which is a programming language which integrates ordinary

functional computation with message-passing concurrent com-
putation [1]. The session type system allows us to reason
about concurrent processes that communicate over channels by
message-passing. Recently, SILL has been extended to support
both synchronous and asynchronous communication by using
the logical concept of polarization [2]. We model a distributed
system by joining many processes executing in parallel in a
synchronous or asynchronous setting.

In the presence of message passing concurrency, there are
two main reasons why dynamic monitoring of communication
is necessary. First, when a new process is spawned, part of
the execution of a program now escapes immediate control
of the original process. If the newly spawned process is
compromised, the messages can wreak havoc on the original
process. Second, session types allow us to abstract away from
local computation because the session type system governs
the communication among these processes and enforces a
communication protocol. This allows us to safely connect
communicating processes written in different languages as
long as they dynamically adhere to the session protocol.
Because we do not trust remote processes or have access to
the code running on each component, dynamic monitoring
is a necessity. While there is a significant body of work on
the static checking of contracts, there is very little work on
dynamic contract checking, especially in a distributed setting.

III. MODEL

We develop a distributed type-directed monitoring infras-
tructure that provably detects contract deviation. In our system,
every channel has two endpoints – a provider and a client. A
process always provides along a single channel, but it may be
the client of multiple channels. A session type A prescribes
the service provided by process P along a channel c. We use
session types as contracts for processes. Figure 1 presents some
examples of session types and their computational interpreta-
tions.

We assume that all the processes are untrusted, but that
the message queues are trusted. The message queues serve as
monitors which observe channels that processes communicate
over and verify that the correct communication protocol is
being observed. Essentially, the monitor acts as a type checker,
ensuring that the processes are consistent with the type of the
channel they are communicating over. If the monitor detects a
typing error, an alarm is raised.

To ascertain that our monitoring infrastructure is adequate
and correctly enforces behavior contracts, we prove two cor-

Fig. 1. Computational interpretations of session types

rectness properties. We first prove that no process is considered
deviant, the monitor is unobservable. That is, the existence
of a monitor does not alter the observable computation of
the system. We also prove that when an alarm is raised by
a monitor, the deviation is attributed to a set of potential
processes where the breach could have originated.

IV. EXAMPLE

We consider a camera application for the Android platform
that takes photos using the phone’s built in camera. When the
user downloads the application to the phone, the application
requests the permissions it requires to function, such as access
to the camera. However, we might like the camera application
to seek permission from the user every time it takes a picture
to avoid the situation of the camera constantly taking photos
which may potentially cause a security violation.

This example is modelled by three processes: the Android
operating system, the user and the camera application. Using
our model, we can concisely encode the behavior contracts of
the camera application and the user as session type declara-
tions.

stype Cam = &{take : photoPerm (picHandle⊗ Cam}
stype User = &{picPerm :

⊕ {fail : User; succ : photoPerm⊗ User}}

The Cam type, which models the behavior of the camera
application, states that the camera offers one service, the
function take. This function requires the input of a photo
permission that it uses to produce a handle to a picture and then
it continues behaving as the camera. The & denotes an external
choice that allows any application to request any service Cam
offers, which in this case is only take.

The User type, which models the user’s behavior, also
offers one service photoperm. This function allows to user to
deny the photo permission (fail) or to approve the permission
(succ). As before, the & denotes an external choice that allows
any application to request any service User offers, which in
this case is only photoperm. The ⊕ denotes an internal choice
coming from the user that allows the user to choose to either
return succ or fail.

We note that the types specify the desired communication
patterns, not the properties of the values being send across
channels. We also note that this example is indicative of more
complicated constraints we can impose on the use of sensitive
data on mobile phones such as location data coming from

Fig. 2. Interaction between the Android OS, the camera and the user.

the GPS. The following is a snippet of code that models the
interaction between the camera and the user. We have a camera
application called cam which has type Cam and a user called
usr with type User.

send cam t a k e ;
send u s e r picPerm ;
c a s e u s e r o f

f a i l =>
succ => perm ← r e c v u s e r ;

send cam perm ;
p i c ← r e c v cam ;

Fig. 2 provides a visual interpretation of the above code.
First, the Android operating system asks the camera to take
a picture, then the camera requests a picture permission
picPerm from the user. The user decides whether she would
like to approve the permission request. If she does not approve
it, nothing happens. If she approves it, she sends the permission
perm to the camera. The camera can then produce a handle
to a photograph pic.

REFERENCES

[1] F.Pfenning and D.Griffith. Polarized substructural session types. In
A. Pitts, editor, Proceedings of the 18th International Conference on
Foundations of Software Science and Computation Structures (FoSSaCS)
2015, London, England. Apr. 2015. Springer LNCS. Invited Talk. To
appear.

[2] B. Toninho, L. Caires, and F. Pfenning. Higher-order processes, functions
and sessions: A monadic integration. In M. Felleisen and P. Gardner, ed-
itors, Proceedings of the European Symposium on Programming (ESOP
2013), pages 350-369, Rome, Italy, Mar. 2013. Springer LNCS 7792.

