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Censorship circumvention tools face an arms race
as they work to evade increasingly motivated censors.
Tools which have distinctive features can be detected
and blocked by censors (e.g., Tor is actively targeted
by censors around the world). As a result, there is
increasing interest in disguising censorship circumven-
tion traffic as benign protocols. SkypeMorph [1] and
StegoTorus [2] are two pluggable transports [3] for Tor
which aim to mask Tor traffic as Skype traffic, and a
combination of Skype, HTTP and Ventrilo, respectively.

While these pluggable transports are able to capture
features of the traffic they aim to imitate (e.g., inter-
packet timings, packet size distributions), Houmansadr
et al. [4] point out that imitating a protocol is not enough
to evade detection – i.e., if circumvention endpoints do
not run the application they aim to hide within, they are
vulnerable to censors who may perform active probing
to observe that the endpoint does not actually implement
the full functionality of the mimicked application. As
such, Houmansadr et al.advocate that circumvention
schemes should actually run the application they are
using as cover, rather than mimicking properties of the
cover traffic.

Towards this goal, FreeWave uses the Skype appli-
cation as a modem to transmit IP data between two
endpoints [5]. However, Geddes et al.demonstrate that
even running the cover application is not enough to
avoid detection by censors [6] – i.e., approaches like
FreeWave may be detected via discrepancies between
application behavior when it is acting as a covert
channel, vs. regular application operation. They classify
these discrepancies into three categories: (1) architec-
tural mismatches between communication patterns of
the application when it is acting as a covert channel
vs. regular operation, (2) channel mismatches between
reliability requirements of the application and the covert
traffic and (3) content mismatches where the packet
contents of the application differ because of the covert
traffic being sent in place of regular application traffic.

Thus, circumventors are in a race to design new
cover channels that are difficult to detect, while cen-
sors search for low-cost mechanisms to distinguish
legitimate traffic from covert channels. In this poster,
we argue that multi-player games as a covert channel
presents a solution that can tip the scales heavily in

the favor of circumvention tool developers. The large
number of games and common features of games within
a given genre facilitate adaptation of existing game-
based covert channels to new games. Further, security
features of games and their ability to leverage either a
central server or peer-to-peer architecture significantly
raise the bar for censors that aim to detect and block
covert channels. Finally, as we will demonstrate with
our prototype (named Castle), game-based covert chan-
nels can be designed such that they match the three
properties highlighted by Geddes et al..

The Castle approach: In order to create a covert
channel mechanism that is general to the majority of
games in the real-time strategy genre, Castle exploits
two key properties.

• Most real-time strategy games share a common set of
actions. Specifically, the ability to select buildings and
assign a location where units created/trained in a building
should go. This location is called a “rally point”, and we
denote the command of setting the rally point for units
created in a given building by SET-RALLY-POINT.
Games also provide the ability to move a selected unit to
a given location (denoted by the MOVE command). Thus,
any encoding that translates data into a combination
of unit/building selections and these primitives will be
general across most games in this class.
• Most real-time strategy games provide a replay option
which saves every players’ moves to disk (for later
playback). Therefore, all in-game commands are written
to disk where they can be read and decoded in real-time,
with little effort.

Castle consists of two main components to send and
receive data. These are illustrated in Figure 1. Sending
is done by encoding data into game commands and
then executing them within the game using desktop
automation. The receiving process monitors the log of
game commands and decodes this list to retrieve data
sent via the system. Figure 2 overviews how the Castle
system could be used to relay data from outside of a
censored region to a client within the region. The client
first installs Castle (e.g., as a browser extension). The
Castle client then initiates a game through a game lobby
(or directly with the client outside of the censoring
region). The client in the censoring region can then
encode and send data (e.g., Web requests) as game
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Fig. 1: Overview of data flow for sending an receiving
in Castle. Shaded components are implemented as part
of Castle while the others use existing off-the-shelf
software.
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Fig. 2: Overview of how Castle can be used as a proxy
for clients within censoring countries.

moves that can be decoded by the client outside of
the censoring region. The game client outside of the
censoring region can then act as a proxy to retrieve
censored content and send it via Castle to the client in
the censoring region.

We demonstrate the feasibility of our approach by
prototyping on two different games (one open-source,
and one extremely popular closed-source real-time strat-
egy game) with minimal development overhead (<
9 hours for development and deployment) and show
its resilience to a network adversary. Specifically, our
results show that Castle is:

• Extensible: Castle’s strength comes from it’s pluggable
architecture which allows it to be easily ported to any
number of games. As an example, it took a bright
undergrad less than 6 hours to complete a basic port
of Castle over a very popular closed-source real-time
strategy game. Due to the availability of game specific
hacks and reverse engineering guides in popular gaming
forums, completing game specific enhancements in order
to improve the data rate of Castle, required only an
additional 3 hours.
• Usable: Even without any game specific modifica-
tions, Castle is able to provide throughput sufficient
for transfer of textual data. Additional (game specific)
enhancements make it suitable for use as a web proxy.
Figure 3 demonstrates the throughput of Castle (under
several configurations) over the closed-source RTS-game,

with and without any game specific enhancements.
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Fig. 3: Throughput of Castle (with and without enhance-
ments) implemented over closed-source RTS-Game

• Secure: Castle is resistant to attacks such as IP/port
filtering and deep-packet inspection since it actually ex-
ecutes the game application. Further, we find that Castle
is also resistant to attacks that depend on analysis of
flow level features such as packet sizes and inter-packet
times. Since the traffic generated by a standard multi-
player game is strongly dependent on many parameters
(e.g., player personality, strategies employed, scenario
type, map, number of players, etc.), flow level features
may vary widely between game instances. Castle (under
all configurations) generated traffic was well within the
variance seen in real human vs. human game traffic, for
both – inter-packet times and packet sizes.
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